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Three finite-element methods for calculating the drag coefficient for a sphere in steady, 
laminar flow at low or intermediate Reynolds numbers are compared. The flow equations are 
solved either for the stream function and the vorticity or for the velocity and pressure, with 
different boundary conditions applied far from the sphere. It is found that accurate values of 
the drag coefficient can be obtained on coarser grids using a velocity-pressure formulation, 
even though a physically realistic boundary condition can be applied closer to the sphere with 
the stream-function-vorticity formulation. In addition calculated values of the drag coefhcient 
are compared with accepted correlations. 

1. INTRODUCTION 

Over the years there have been many numerical calculations of the drag on a 
sphere in steady, laminar flow. Hamielec, Hoffman, and Ross [l] and Le Clair, 
Hamielec, and Pruppacher [2] solved the stream-function-vorticity equations with 
a finite-difference method. Dennis and Walker [3] used a semi-analytical for- 
mulation whereby the flow variables were expanded as truncated series of Legendre 
functions in the angular variable, hence reducing the equations to ordinary differen- 
tial equations in the radial variable. The resulting equations were solved 
numerically. More recently Sayegh and Gauvin [4] examined the effects of the 
variation of fluid properties with temperature and Renksizbulut [5] and Renksiz- 
bulut and Yuen [6] have studied the problem with heat and mass transfer from t 
sphere. These authors evaluated their finite-difference numerical methods by solving 
the isothermal problem. The results of all these calcufations vary by about 5 %, 
reflecting the problems of external flow calculations where the effects of the sphere 
are significant at distances many times its radius. Finally we have reported some 
calculations [7, 81, believed to be very accurate, using a finite-element method to 
solve a stream-function-vorticity formulation ( C# - 5 formulation) of the Row 
equations. 

In this paper we extend this work by comparing three finite-element ca~~u~a~io~s 
of the drag coefficient: one using a velocity-pressure formulation (u-p for- 
mulation); and two, with different conditions on the outer boundary of the com- 
putational region far from the sphere, using the stream-function-vorticity for- 
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mulation. As the grid is relined and the outer boundary moved further away from 
the sphere, the computed drag coefficients for these different formulations converge 
to the actual value in contrasting ways. 

The important parameter for describing the flow is the Reynolds number, defined 
as Re = dUp/,u, where d is the diameter of the sphere, U its velocity relative to the 
surrounding fluid, and p and p respectively the density and the dynamic viscosity of 
the fluid. For Re 5 130 the flow is laminar and stable; as Re is increased beyond 
about 130 a weak long-period oscillation appears in the wake. So we compare the 
three solution methods for two values of Reynolds number, 1 and 40; flows at these 
values are typical of results at low and intermediate Reynolds number. Finally, we 
tabulate values of the drag coefficient for Re in the range 1 to 100, and compare the 
values with the correlations suggested by Clift, Grace, and Weber [9]. 

2. STREAM-FUNCTION-V• RTICITY FORMULATION 

The Navier-Stokes equations can be formulated in terms either of the stream 
function and the vorticity or of the velocity and pressure, and we consider these in 
turn. 

It is natural to use spherical polar coordinates (Y, 8, 4) and, with axisymmetry, 
the equations for the stream function and vorticity are 

1 w I 1 a 1 w 
sin 8 a? r2 de sin 0 de = -4, 

1 a$ ai 1 a* x i a* [cot6 a* ~-_-----~ ___- 
r2 sin 6 a0 ar r2 sin 8 & a0 r3 sin 8 dB+ r2 sin 9 i3r 

where $ is the stream function and [ is the vorticity. The equations have been made 
dimensionless by dividing the radial coordinate by the radius of the sphere, and the 
velocity by the free stream value. These equations are solved in the region given by 
1 <r 6 r, and 0 < 6 < rc. For computational purposes we introduce the variable 
5: = In(r) and treat t and 0 as the independent variables. This change of variables 
produces a natural compression, in real space, of the grid lines near the sphere. 

Equations (1) and (2) must be supplemented by appropriate boundary con- 
ditions. Along the downstream and upstream symmetry axes $ and [ are both zero. 
Around the surface of the sphere (r = 1) the no-slip condition requires that both ti 
and Lh+b/ar are zero. It is more difficult to specify the boundary condition on the 
outer boundary of the computation region (r = r,). Vorticity is created at the sur- 
face of the sphere and then diffuses away from the surface and is convected 
downstream by the flow. So c is set to zero on the part of the boundary at r = r, 
that is the inflow boundary (7r/2 d B d rc), expressing the fact that there is no vor- 



SOLVING FLOW PAST A SPHERE 323 

ticity in the free stream. On the other part, 0 6 8 <n/2, the numerically convenient 
condition al/& = 0 is used, and because of the form of the vorticity equation, any 
error introduced decays exponentially away from the boundary. 

In addition a further condition on the stream function is required. That use 
most previous calculations [l-6], and also considered in this .comparison, is the 
free stream condition, which implies that at sufficiently large r0 the stream function 
is unaffected by the presence of the sphere. If we write 

where tjFS is the stream function in the absence of the sphere (+r2 sin’ %), and $, is 
the perturbation due to the presence of the sphere, then the free stream boundary 
condition is 

rl/,=O at Y=T,. (3) 

A better boundary condition may be developed by noting that at large distances 
from the sphere and for arbitrary Reynolds number, the perturbed component of 
the flow has two parts [lo]. There is an inflow in the wake region which is 
associated with the momentum defect, the momentum removed from the free 
stream which produces the drag on to the sphere. To compensate this inflow there 
is a uniform radial flow out from the sphere which, at large distances, resembles 
that from a point source of mass. At sufficiently large distances the entire perturbed 
flow is radial; this implies 

3Lp. 

The condition (4) is much easier to apply in a stream-function-vorticity for- 
mulation than in a velocity-pressure formulation.. This condition has been used 
previously by Fornberg [11] in a study of flow past a circular cylinder. It has a 
more secure physical basis than the free stream boundary condition and we thus 
expect to be able to apply it closer to the sphere. 

The flow equations in the region about the sphere were discretized according to 
the Galerkin finite-element method, by means of nine-node biquadratic elements. 
The method is similar to that of Tong [ 121 and Cliffe and Winters [ 13 ] and was 
implemented using the TGSL finite-element package developed at Harwell [14]. 
Now since the condition (4) applies to $P rather than to I/J, it is natural to treat tJP 
and < as the dependent variables after substituting the free stream function, 
$Fs = 4~’ sin2 6, into (1) and (2). But the solution so obtained exhibits “wiggles” in 
the vorticity close to the sphere near % = 0 and % = 7~. We attributed these “wiggles” 
to the fact that the finite-element interpolation of sin’ 8 is not very smooth, and to 
the exacerbating effect of the l/sin % terms in (1) and (2). To get round this dif- 
ficulty, we replaced the analytical solution for $Fs by a finite-element 
approximation, obtained by solving equation (1) with [ =0 and appropriate 
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Dirichlet conditions at r = 1 and r = Y,. Whilst the values of this finite-element 
approximation are not exact on the nodes of the elements near the sphere, it does 
possess a continuous first derivative, and so the problems with the vorticity are 
avoided. 

An important quantity, which we consider here, is the drag coefficient C,. This is 
related to the drag D on the sphere by 

C, = 8DJpU2nd2. (5) 

It is made up of two contributions: a viscous component CV and a pressure or 
“form drag” component C,. C, and C, are given by 

(6) 

(7) 

3. VELOCITY-PRESSURE FORMULATION 

The other formulation of the Navier-Stokes equations is based on the velocity u 
and the pressure p. The non-dimensional form of the equations is 

Re 
2 u.vu= -vp-Pu, 

v.u=o. 

(8) 

(9) 

The boundary condition on the surface of the sphere is u = 0. We also apply boun- 
dary conditions on a spherical surface far from the sphere (Y = Y,). Over the part of 
the boundary on which the free stream flows into the computational region 
(7c/2 < 8 d rc) we set the velocity equal to the free stream value, and over the 
remainder the viscous stress is set to zero. This is a weaker requirement than setting 
the velocity equal to the free stream value all over the outer boundary, and so we 
expect to be able to apply it closer to the sphere. However, it does not have the 
physical basis of zero normal derivative condition (4) for the stream-function- 
vorticity formulation. 

The equations are again solved in spherical polar coordinates using a Galerkin 
finite-element method. Nine-node rectangular elements, having biquadratic inter- 
polation, were used for the two components of the velocity and piecewise linear 
interpolation was used for the pressure held. This pressure interpolation is, in 
general, discontinuous across element boundaries. This implementation in spherical 
polar coordinates is a trivial extension to the method advocated by Engleman, Sani, 
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Gresho, and Bercovier [15]. From the solutions the viscous and pressure com- 
ponents of the drag coefficient are calculated, but now using 

sin e cos e + 2 sin28 de, 
r= 1 

(11) 

4. COMPARISON OF DIFFERENT METHODS 

Predictions of the three finite-element methods are examined at two values of Re, 
1 and 40, which are typical of low and intermediate Reynolds numbers. Various 
uniform grids were used, specified by 3 quantities: ng the number of elements in the 
0 direction, ng the number of elements in the 4 direction and 5, the position of the 
outer boundary. In the comparison, we examine the best value of C, that can be 
obtained for given i” co, the accuracy of each of the threie methods for given nE and 
n,, and the most economical calculation for a given accuracy. 

A number of values of 5,) the position of the outer boundary, are considered, 
ranging from t, = 2.4 (Y, = 11.0) to r,, = 4.8 (r, = 121.5). For the above Reynolds 
numbers we found that no=20 and nB= 30 gave the same results to within the 
required accuracy. So the n, = 20 solution is regarded as being independent of the 
number of angular elements. However, for higher Re more elements are needed to 
resolve the narrower wake. It is not so easy to achieve resuhs independent of the 
number of radial elements. As C, in the $ - [ formulation (6) only depends on [? it 
converges as 0(/z:), where hr is the element size in the radial direction (‘,/n&. 
However, C, (7) involves derivatives of c and so it converges more slowly as O(h!). 
In the u - p formulation C, (10) involves derivatives of the velocity and C, ( 11) 
involves p, and so both converge as Q(hi). So the results from different grids are 
used to calculate an extrapolated drag coefficient for each t ~, using an expression 
of the form 

u(hi) = e + ~0%; + ph:. (121 

Three grids, typically with hr = 0.086, 0.06, and 0.043 are used to obtain e, a, and j3. 
Details of the comparison are outlined in Table I. The extrapolated valued of the 

drag coefficient is given for each 4,. As expected, it is seen that the $ -i for- 
mulation with the zero normal derivative boudary condition (4) gives the most 
accurate answers, and as a consequence can be applied closer to the sphere. 
IIowever, for Re = 40 the u-p formulation with the free stream condition applied 
upstream is nearly as good. For given 5,) the $ - < formulation with the free 
stream condition (3) has the largest error. However, the error would be even larger 
for a free stream condition over all the outer boundary with the u-p formulation 
as the condition on the vorticity is less restrictive than that of zero tangential 
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velocity. For all the methods the boundary has to be further from the sphere for 
given accuracy for Re = 1 than for Re = 40, reflecting the fact that the vorticity dif- 
fuses further at lower Re. 

In addition in Table I for each 5, the percentage error is shown for two grids: 
one with rzy = 50 and the other with h, = t,/n, =0.06 (these are the same for 
5, = 3). The error is expressed as a percentage of the extrapolated C, for that r,, 
rather than the value as [, + co. The behaviour for both $ - [ methods is very 
systematic. The error is approximately constant for given h, as 4, is increased. As a 
result the error increases for fixed ng, as the grid becomes coarser. The error is 
larger for Re = 40, than for Re = 1. The results for the u - p formulation are far less 
systematic. For the smaller values of 5 oI,, when the presence of the outer boundary 
is affecting the drag significantly, the error is quite large. However, as 4,, is 
increased and the limiting value of C, is approached, the error for lixed h, plum- 
mets. Remarkably for the values of r, considered, even the error for fixed ~1~ falls, 
so for given ng and ny an answer closer to the actual drag coefficient is obtained 
with a larger 5, and coarser grid. Thus for the larger values of is,, the error for 
given <, is significantly lower for the u - p formulation than for those using $ and 

It is difficult to see why this should be the case, but the following argument may 
provide an explanation. The finite-element representation we are using in the u - p 
formulation is designed to make the error in the stress tensor stationary (this is 
only strictly true in Stokes flow). Since the drag is an integral of this stress tensor, 
we might expect our u - p formulation to produce more accurate answers than the 
$-c method, for which the error in the stress is not stationary. 

In the u - p formulation more equations are being solved, and on the same grid 
we estimate that 40 % more computing time is required than for the other two 
methods. So for calculations restricted to the same computing time, 40 % more 
elements can be used in the radial direction with the $-c formulation, and with 
quadratic convergence any errors will be approximately halved. However, we see 
from Table I that provided, <, is sufficiently large, the u - p formulation still gives a 
more accurate value. For Re = 1 the difference is fairly small, but for Re = 40 it is 
more appreciable: at 5, = 3.6 the percentage error is 0.08 for the u - p formulation 
with h, = 0.06; at the same cost but with the $ - < formulation we could compute 
with nir increased by 40 %, reducing h, to 0.043, so that the error obtained with the 
better boundary condition should decrease from 0.58 to about 0.3. 

This discussion has focussed on the drag coefficient. If the details of the flow are 
required, such as the form of the perturbation stream function far from the sphere, 
the zero normal derivative boundary condition (4) with the $ - 5 formulation is the 
only one with a secure physical base. 
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TABLE I 

A Comparison for the Three Solution Methods of the Limiting Value of the Drag Coefficient 
Co(t,)(nS, no -+ co) and the Error on Two Specific Grids for Various Positions of 

the Outer Boundary (<,) 

ra 5, 

Limiting 
CLl(<,) 

(n,. no + co) 

% Error on specific grid 
- 

n,=50 : Jn, = Q.C6 

(a) Re=l 

(i) $ - 5 formulation, zero normal derivative boundary condition 

20.1 3.0 27.35 0.07 
36.6 3.6 21.33 0.12 
66.7 4.2 27.32 0.14 

121.5 4.8 21.32 0.19 

(ii) $ - [ formulation, free stream boundary condition 

20.1 3.0 28.02 0.08 
36.6 3.6 27.54 0.10 
66.7 4.2 27.38 0.14 

121.5 4.8 21.34 0.19 

(iii) u - p formulation 

20.1 3.0 27.61 0.38 
36.6 3.6 27.40 0.09 
66.7 4.2 21.34 0.06 

121.5 4.8 27.32 0.05 

(b) Re=40 

(i) $ - [ formulation, zero normal derivative boundary condition 

11.0 2.4 1.786 0.40 
20.1 3.0 1.788 0.58 
36.6 3.6 1.789 0.78 
66.7 4.2 1.789 0.98 

(ii) $ - 5 formulation, free stream boundary condition 

11.0 2.4 1.820 0.40 
20.1 3.0 1.796 0.60 
36.6 3.6 1.791 0.78 
66.7 4.2 1.789 0.98 

(iii ) u - p formulation 

11.0 2.4 1.777 0.46 0.63 
20.1 3.0 1.788 0.14 0.14 
36.6 3.6 1.789 0.10 0.08 
66.7 4.2 1.789 0.08 0.05 

0.07 
0.08 
0.07 
0.07 

0.08 
0.07 
0.07 
0.07 

0.38 
0.07 
0.03 
0.03 

0.59 
0.58 
0.58 
0.58 

0.59 
0.60 
0.58 
0.58 

Note. The error is a percentage of C,(t,) rather than the value as <, + 05. 
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5. COMPARISON WITH EARLIER WORK 

Finally in Table II we compare the results of our calculations of C, for Reynolds 
numbers in the range 1 to 100 with previous calculations [l-5]. Our computed 
values of C, and C, are also given. In addition the values of C, are compared with 
the correlations developed by Clift et al. [9], based on earlier work. They suggest 
correlations covering all values of Re; and the two expressions relevant to the 
present results are 

CD-$ [l +()1315 Re(0.8~~0.0510gioRel] 0.01 d Re d 20, (13) 

C, = E [ 1 + 0.1935 Re0.6305] 20 < Re < 260. 

Our results quoted in Table II were those obtained using the $ - < formulation and 
the zero normal derivative boundary condition (4); and we believe the values of C, 
are accurate to within 2 in the fourth significant figure. We see that the correlation 
(14) is rather better for intermediate Reynolds number than (13) is for low 
Reynolds numbers, where there are errors’of up to’l.5 %. 

6. CONCLUSIONS 

The zero normal derivative condition (4) used with the $ - { formulation and 
imposed on the boundary of the solution region far from the sphere is the only one 
of the conditions we have considered with a secure physical basis, and it can be 
applied closer to the sphere than the other two. In addition, it is well suited for 
computing the overall flow. However, we have found that, as long as [, is suf- 
ficiently large for the extrapolated value of C, for that 5, to be an accurate 
estimate of the actual value of C,, then coarser grids can be used with the M - p 
formulation than with the $ - [ formulations for a given acceptable error. Indeed, 
even though for the same grid the u-p formulation is approximately 40 % more 
expensive, this is more than compensated for by the coarser grid, so for a given 
required accuracy in the drag coefficient, the u - p formulation is cheaper. 
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